h
L
ity

i

: X,

Wb el
1ded ey
it S

Tome

5y

PP il

LY PR

i AT,

, [=
S le
.

L &
- A BRANCH AND BOUND METHOD O "

. FOR OPTIMAL FAULT FINDING

* 37, RICHARD W. BUTTERWORTH

ORC 6921 ©
AUGUST 1969

"* OPERATIONS
. RESEARCH
CENTER

1
n .
PR
c ety
. v

COLLEGE OF ENGINEERING
7. UNIVERSITY OF CALIFORNIA . BERKELEY

A BRANCH-AND-BOUND METHOD FOR FAULT FINDING

by

Richard W. Butterworth
Operations Research Center
University of California, Berkeley

7

AUGUST 1969 ORC 69-21

This research has been partially supported by the U. S. Army Research
Office-Durham under Contract DA-31-124-AR0-D-331 and th: National
Science Foundation under Grant GK-1684 with the University of
California. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

ACKNOWLEDGEMENT

. The author wishes to thank Professors E. Lawler and R. Wolff

for their interest in and guidance of this writing. In addition, the

author's wife deserves thanks for her clerical and moral support,

ABSTRACT

The problem is that of optimally testing a coherent system
to learn some characteristic of it, for example, whether it
is operating or not. A branch and bound and a dynamic
programming solution are given, as well as a comparison of
computer computation times for both. Several specific
models with analytical solutions are also presented.

The general problem is posed abstractly in Chapter 1, and
two solution methods are detailed. Briefly, we are
presented with n binary-valued random variables and a
function of the vector of these random variables. The
object is to learn the value of the function by testing

some of the random variables and an optimal testing policy
uses the minimum average time to complete its testing. The
first solution method given is a dynamic programming type as
this 1s easier to formulate. The second is a branch and
bound method; its description is somewhat more involved.
Chapter 2 is concerned with formulating general fault
finding models which can be cast as problems solved by the
methods presented in Chapter 1. Also included is some
computational experience comparing the effectiveness of both
solution methods for one of the models described. Chapter 3
gives several specific fault finding problems and analytical
results for them. This chapter 1s developed independently
of Chapter 1, and relies on Chapter 2 only for its initial
discussion of coherent systems.

L e S-S

TJABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENT

CHAPTER 1: DECISION PROBLEMS

CHAPTER 2: GENERAL FAULT FINDING MODELS FOR COHERENT SYSTEMS . . . 23
CHAPTER 3: ANALYTICAL RESULTS FOR (k/n) SYSTEMS 37
SUMMARY . & & & 4 v o e 63
BIBLIOGRAPHY

Ty T S T T T e e e

CHAPTER 1

DECISION PROBLEMS

Introduction

Decision problems occur when one is presented with the task of de-
termining the value of a known function of n random variables, in the
following circumstance. We suppose that the n random variables are
binary, each one taking the value zero or one. There is a time ti 20
incurred to determine the value of the ith random variable. We remark
that, of course, t, could be interpreted as any other measure of the
cost to determine the value of the ith random variable. A procedure, or
policy, for determining the value of the known function is a rule which
tells its user which random variable to test next, based on the results
of the previously made tests, or to stop, if the known function can have
only one value, almost surely, given the results of tests made up to
this point.

When the function is one to one, determining its value is equivalent
to determining the value of every random variable. In general, however,
the function is many to one, The collection of inverse images of each
functional value forms a partition of the sample space; determining the
function's value is then equivalent to identifying the set of the parti-
tion in which the vector of random variables resides,

There are various criteria for comparing policies; we will deal pri-
marily with the expected time until the testing process stops and the
value of the known function has been determined almost surely, A straight-
forward dynamic programming solution and a branch and bound type solution
are presented, as well as an example illustrating the branch and bound
algorithm. The chapter is concluded with a brief discussion of another

criterion.

The generality of this model of decision problems suggests that a
wide variety of real problems can be formulated in these terms. One
such problem is that of converting ''decision tables', a format for computer
programming, into a set of machine instructions logically equivalent to
the given decision table. See, for example, [Reinwald and Soland, 1966]
and [Reinwald and Soland, 1967]. Some fault finding problems can also be
formulated this way, which is the topic of Chapter 2. A frequent sugges-

tion as a real application is clinical diagnosis.

A. Definitions and Notation

We say (Yl, cees Yn g A', cees Ad) is a n-th order decision problem
when:

(i) Yy» ..., ¥ arebinary (0 or 1) random variables
and

(ii) {Al, e Ad] is a partition of {0, 1}" = {(wl, ceey 0)| w,

=0 or 1 ,i=1,...,n}.

The correct action is k , a random variable, defined by (Yl' ceey Yn)
€ Ak almost surely., We put Y = (Yl' cees Yn) and write Y € Ak a.s.
The object is to determine the correct action almost surely in minimum
expected time by successively determining the values of the Yj's. The
""correct action'' should be thought of as the value of the function men-
tioned in the introduction and should not be confused with a policy for
determining it. This terminology is motivated by applications, such as
in Chapter 2,

To determine, or test, Yj requires time tj 2 0. The process
stops when we are almost sure of the value of random variable k . We

say the state of the problem is s = (sl, odds s sn) € {-1, 0, 1}" when,

if sj = =] then Yj has not been tested, while if sj =0 or | then

LY

Yj has been tested and its value is sj . In particular, set s@ =

(-1, ..., =1) , the initial state when no Yj has been tested. We de-

J
space corresponding to the state of knowledge s .

fine §={Y, = sj I j 23 sj # -1} , the event in the underlying probability

A policy for (YI’ T Yn . Al’ e o » Ad) is a rule which tells its
user which Yj to test next, based on the state of the problem. Speci-
fically, to use policy m when in state s means to test Yn(s) , i f
n(s) =1,2, ..., n, and to stop if m(s) = 0 , indicating the correct
action is almost surely determined. We find it formally convenient to
require that policies stop at states s for which P(3) = 0 , and at
those states when the correct action is known, almost surely. Accordingly,
a policy will be any function m on {-1, 0, 11" to {0, 1, ..., n)
such that for states s = (sl, cees sn) .
(1) P(8) =0=>m(s) =0
(a) m(s) = 0 <=> akaP{YEAk|§}=l and
(2) P(s) >0 =>
(6) n(s) = j>0=>s, =-1.
We will denote by Tﬂ(s) the (conditional) expected time to deter-
mine the correct action, beginning in state s and following policy 1 .

Specifically,

Tﬂ(s) = expected time until process stops, beginning
in state s and using policy m , with respect
to the conditional distribution P{. | 8} ,

=0 if P(3)=0.

There are, of course, various criteria for comparing policies. Our

interest here is in the expected time to determine the correct action,

beginning in the initial state % . Accordingly, we will call policy

m, optimal if it minimizes Tn(so) among all policies.

B. Dynamic Programming Solution

Let us enrich the problem by assuming the time to test Yj depends
on the state s of the problem when the test is performed, say t(j, s)
This being the case, we have for all states s 3 P(3) >0 , for all
policies myn(s)=j >0, Tﬂ(s) = t(j, s) + P{Yj =0 | §}Tn(s') +

= S " ! = =
P[Yj 1| s}T"(s) , where s (sl. ceer Oy ey sn) and s"

(sl. cees ‘i' ey sn) . This provides the basis for the usual dynamic

programming solution to finding an optimal policy. Let the optimal value

function be T(s) = Min [T“(s) | policies n} . Then

0 if dpolicy mdn(s) =0, i.e., which stops at s ;
otherwise

T(s) = Min (t(j, s) + P{Y, = 0| 8}71(s') + P{y., = 1 | 3]T(s"))
jasj--l] J

where s' = (sl, S—

o sn) and s'' = (sl, N S —

This functional equation can be solved by considering states s with
successively more occurrences of =1, An optimal policy is also generated
in the usual way,

The primary restriction to using this solution is that the function-
al equation must be used once for each state, indicating that the compu-
tational complexity of the algorithm grows roughly as 3". 0On the other
hand, by making these computations we have really solved a family of
related problems, each one an extension of the original. This bonus is
a common occurrence in the solution of problems via dynamic programming.
The extension is simply the assumption that the cost of determining Yj
can be allowed to depend on the tests previously made and their results,

namely the current state of the problem, Also, we see that an optimal

3 s ohdond. o a
ot R o = T e T !

policy n recovered from the functional equation above really satisfies:
Vs : T (s) = Min Tn(s) . That is, U is optinal uniformly for be-
ginning ?n any s:ate s . This is stronger than simply requiring it
minimize Tn(so) . If, during the use of this optima! policy, some more
information were to become available, then the problem need not be re-
solved for a new initial state; one can continue tuv use the optimal policy

generated by the functional equation, as it will be optimal for this

newly created problem,

C. Branch and Bound Solution

The decision problem has a ''‘branch and boind" solution which, like
any solution of this type, is potentially an enumeration of all feasible
solutions. Such complexity is usually not realized and this solution
provides a reasonai’le alternative to the dynamic programming solution,

In order to describe the branch and bound scheme precisely, the
notion of a policy tree will be defined. Roughly, a policy tree is a
partial specification of a testing policy. For example, the policy tree
[(so, i)} is the partial specification n(so) = | , so we say this policy
tree represents all policies which begin by testing Yi first (in state
so). Thus, policy trees become the device for 'branching'' at each step.
The ''"bounding'' of policy trees, that is, a lower bound on Tn(so) for
all m represented by some policy tree, is obtained from a lower bound
on the probability that each Yj will be tested. An appealing feature
of the bound obtained occurs when the algorithm branches on a particular
policy tree by making its specification more complete in various ways
and hence creating a collection of related trees; the lower bounds for
the newly created trees are computed by simply adding a quantity to the

lower bound for the former tree being expanded. These incremental

g

quantities also provide an upper bound on TTT (s°) for an optimal policy
TN This upper bound is used to eliminate sgme policy trees from con-
sideration directly. While shuch trees would never be expanded in the
normal course of compu:ation anyway, their very presence consumes storage
and time in needless manipulation.

The basic fo;m of our algorithm is the content of [Soland 1966], except
for the probabilistic interpretation of tﬁe lower bounds and the compu-
tation and use of upper bounds.

A policy tree will be a partial specification for policies, and will
be the device which allows us to use a branch and bound scheme. Because
of the inductive way this device will be used, we will define a policy

tree inductively. A policy tree is a set 4 of ordered pairs (s, i)

of states s and integers i , 0S| < n , such that:

Basis: @ = {(s°, i)} is a policy tree, provided there exists a policy

m™ such that n(so) = j

Induction: If & is a policy tree and (s, i) € & such that i >0 and,
[J— H o=
for s (sl,Oi,...,sn) and s (sl""’li""’sn)
neither (s', j) nor (s", k) are elements of & for any
j and k , then @ U {(s', h') , (s", n'")} is a policy tree

for all pairs h' , h" such that there exists a policy n

with m(s') = h' and n(s") = h" .

We need to define several quantities related to policy trees. First,

the policy tree 4 will be said to represent the policy m when, for

all (s, i) €4 , we have m(s) =1 . In this way, policy trees partially
specify a policy. Notice that the larger the policy tree is, the fewer

policies it represents. When a policy tree is as large as possible, that

is, when it cannot be extended according to the induction step of the

definition above, we say it is a complete policy tree. Equivalently, a

policy tree is complete if it is set maximal among all policy trees. We
will see below that complete policy trees effectively represent only onc
policy. One final notion is that of a terminal element of a policy tree,

The element (s, i) € € is a terminal element of 4 if i=0 or, if

i >0, then neither (s', j) nor (s'", k) are elements of & for any

j and k , where s'=(sl,...,0i,...,sn) and s“=(s‘,...,li,...,sn)
Elements of 4 which are not terminal are called interior. We see the
terminal elements (s, i) of a policy tree for which i >0 are exactly

those referred to in the induction step of the policy tree definition.

We continue with some basic properties of policy trees.
Lemma |: Every policy tree represents at least one policy.

Lemma 2: A policy tree is complete <=> for all terminal elements (s, i)
of 4 , we have i = 0 => all policies represented by 4 are equivalent
to the user, i.e., implementation of any two policies represented by 4

a.s. lead to the same sequence of tests.

Lemma 3: Let a pe any policy tree and ™ be any policy represented by
4. Then
1 T.(° = 2P(E) ok, o+ PG T (s) .
1 I : i :] n

(s, i) interior (s, i) terminal

elements of 4 elements of 4
Proofs: Lemmas | and 2 are easily shown by induction. Lemma 3, also
shown by induction, is proven here. We will show that Equation (1) holds
for all policies represented by 4 by showing inductively that the class

of policy trees for which (1) holds contains all policy trees.

el P i i Wl

]
]
b
%
§
b
g
i
5
»

Basis: If & = {(s°, i)} , then (1) clearly holds; (s°, i) is a

terminal element.

Induction: Let & be any policy tree for which (1) holds. Let (s, i)

be a terminal element of & with i >0 . Let s'=
(s'. > Ao Ol. - sn) and s' = (SI’ o, ‘i’ e, B
If (h', h'') are such that for some policy m , n(s') = h!'
and m(s") = h'' , then B = 42U {(s', h') , (s", h'')} is a
policy tree also. We show (1) holds for B . If n s
represented by B, then n is represented by a , i(s') = h!

and Tn(s'") = h'' ., Hence
PEIT () = P(3)[e; + PLY, = 0 | 817 (s") + Ply, = 1 | $31_(s1)
= P(3)t, + (3T (s') + P(S)T (s") .

It now follows (1) holds for B . (s', h') and (s", h'') are terminal
elements of 8 , while (s, i) becomes an interior element of B. 77/
A lower bound on Tﬂ(so) over policies represented by a specific

policy tree is generated by Lemma 3 and the following probabilistic con-
siderations. Let “j be any policy satisfying: Vs , nj(s) = j =>
vidj, S $ -1 . Thus "j tests Yj only after all other Y. have
been tested. Many policies have this property, but the random event of
testing Yj is the same for each such policy. Letting n be any policy,

we have, for the problem beginning in the nominal initial state s° ,
(2a) {Yj is tested by using policy ﬂj} c [Yj is tested by using policy n} .

It follows that, for any state s d P(s) >0 .

P{beginning in state s, Y.i is tested by using policy "j I 3} =
(2b)
P{beginning in state s, Yj is tested by using policy m | §} .

Lemma 4: Let nj be as described above. Let

tjP{beginning in state s, Y.i is tested by using policy m; | 3}
1,(s) = if P(3) >0

0 otherwise,
and let t =0 . Then, for any state s and policy tree 2 ,

n
(i) for all policies m 3 n(s) =i, 2, Ij(s) tte s Tn(s)
j=1
j#i
(ii) for all policies m represented by & ,
s n
(3) T,(s%) = 25 P(3)e; + 2 P(3) X 1.(s) .
(s,i)e” (s,i) terminal j=1 J
elements of @ jHi

Denoting this lower bound by L(Q) , we have

(iii) for all policies m represented by £ Tn(so) > L@ and,

when & is complete, Tﬂ(so) =L@ .

Proof: (ii) and (iii) follow from (i) and Lemma 3. (i) follows from

Equation (2) above and the formula:

n

EtjP{YJ. is tested when beginning in state s and using m | §}
= if P() >0

T (s) =

0 if P(s)=0.7/1/
An upper bound on the value of an optimal policy can be computed in

terms of quantities which will be on hand from making the lower bound

computations., Specifically, let & be any policy tree and T any

10

policy such that for all interior elements (s, i) of &£ , we have
n(s) = i . Thus ™ may not be represented by 4 . However, Equation

(1) remains valid and is proven the same way. Recalling this formula,

T (%) =) P(3)t, +) P(3)T (s) .
(s, i) interior (s, i) terminal
elements of & elements of £

Now, let (s, i) be a terminal element of & for which i >0 . Suppose
m is such that, beginning in state s , Yi is not tested unless it is
necessary, that is, unless m has tested all untested Yj (those with
s. = -1) except Yi , and still it is necessary to know Yi in order to

J

determine the correct action. Thus m is a mn, policy as described

i
above. Then I.(s) = tiP{Yi is tested, beginning in state s and using
policy w| 8} so

Tn(s) s jaszj‘-‘ tj + Ii(S) g

j#i

It follows that for some policy ™ ,

() T (s%) = z P(3)t, + z PB) Tt v L(s)

(s,i) interior (s,i) terminal j3s.=-1
element of £ element of 4 3 ;"
i >0 7!

Denoting this upper bound by U(Q) , we have for all policy trees & ,
T (so) s U(@) , where uA denotes an optimal policy, and T (s°) = uw)
whznever A is complete. Our branch and bound scheme will ge:erate
various policy trees and the quantities necessary to compute U(@) .

The following formulas give an explicit form for IJ.(s) and also
allow us to see how the bounds L{&) and U{) are computed sequentially

as needed. Define

n . -
Q(s):{ —(wl, ...,wn)G{O, 1} |V195j 0 or 1 , we have wj Sj}’

so in particular, 0 = Q(s®) = {0, 1]" . One can think of w€Q as an

outcome of the random vector Y = (Yl’ = Yn) . The probability of such

an outcome is P{Y =w} . Let i
1 if, for w's(wl, ...,(.I-wj),...,wn) , we have 1
ply=w} >0, Py =w'}>0 and w and w' belong to

Aj(w)) distinct sets of the partitién [Al. s Ad} .
0 otherwise. !
1 if, for w‘-(wl, ...,(I-wj),...,wn) , we have |
- Ply=w} =0 or P{Yy=w'}=0 or w and w' belong to '
Aj(w)) a common set of the partition {Al' R N: Ad} . |
.0 otherwise. ‘
|
These are devices for computing Ij(s) . For states s with P(8) >0 , !

tj Y. Py =w | §}Aj(w) if 5; = -1
Ij(S) = Sl

0 if sj-O or 1 .

However, what really appears in computing L(2) and U@) is P(§)IJ.(S) .

For any state s and integer j , 1 < jsn, define

t. 2 P{Yy=wla (v if s, = -
E.(s) = ’ J weqI(s) J) J
: 0 if sJ. =0 or 1,

SO

(s) P(§)Ij(5) = EJ-(S) .

12

For any state s and integer j , 1 < j S n , define

tj > ply= w}Z\j(w) if s, =<l

E.(s) = we(s) ’
J

0 if sj-o or 1| .
Notice Aj(w) + Z\J.(w) =1, so

(6) E.(s) + E.(s) = t P(3) .
J J J

Now, recalling the formulas (3) and (4), we can write L(Q) and U{)
in terms of E.i (s) .

n

7) L = P(s + E.(s) .
: = (s,z%)EQ S)ti (s, i)zt:erminal j-ZI i
element of & j#i
(8) u@) = z P(3)t, + 2z P(3) 2t +E(s)
(s, i) interior (s, i) terminal j3s.=-1 J '
element of 4 element of & 3 j:‘i

i>0

In particular, for a policy tree of the form 4= [(so, i)} with i>0,

using (6) we see

n n
(9) L@ = 2t - X E () + E (7).
j=1 j
n -
(10) u@ = 3 t. - £.(s%9 .
j=1 J J

Now, if we extend a policy tree & , we want to obtain the bounds for the

new tree in terms of the bounds on & . Specifically, let (s, i') be a

terminal element of the tree @ with i >0 . For s'= (sl, oL Oi, cees sn)

and s''= (sl. ey li’ cees sn) , if h' and h'" are such that there

exists a policy with n(s') = h' and ni(s'") = h"' , then according to

the induction step of the definition of policy tree,?a av {(s', n') ,

13

(s", W)} is also a policy tree; using (7), (8) and (6), we have
an L@) = L4 +E (") + E.(s")

and

(12) v@) =u@ +E (s) - E,.(s') - E.(s")

-1(ht = 0)P(3Y) L t. - 1(h=0)P(3) X t.
jasj=-1 J E J

where we have taken Eo(s) = 0 for every state s and

1 if h=20
1(h = 0) = , h=h', h",
0 if h#0

Let (Y|, v Yo Aps vens Ad) be a decision problem. The

following is a '"branch and bound'" algorithm for finding an optimal policy.

Step 1: If every policy Tt stops at initial state s° (corresponding
to the correct action being a constant almost surely), then Tn(so) =0 .
If not, then Vi 31 s i s n , d policy nan(so) =i . Let

F= {fli | i=1,2, ..., n} where a, = {(s°, i)} , a policy tree.
Notice every policy is represented by exactly one of the policy trees in

the family <. Set

n
L(&;) =t +) Ej(s°)

j=1
j#i
and
o n
u@@.) =e.(s) + Z t.
i i = j
i#i
and

U = Min U(Qi) .
i

14

Then Tn (s°) SU and, for all i and n with n(s°) = j, Lwi) <
Tn(so) .o Continue to Step 2.

Step 2: Reduce the set & by removing any £ €53 L{@) > U ; those
policy trees cannot represent an optimal policy. Let the policy tree&
satisfy L(2) = Min L(Z') over &' €5, If A is a complete policy
tree (cannot be augmented), then all policies it represents are equiva-
lent to the user {Lemma 2) and any one of them is optimal, since for such

a policy w, L(Q) = T“(so) . If & is not complete, continue to Step

3.

Step 3: Since 4 is not complete, there exists a terminal element

(s, i) of & with 1 >0 . Let s'=(sl,...,0 .,sn) and

[
s = (sl, P PR sn) . Augment & by removing & and replacing
au {(s', n') , (s", h'*)} for each pair (h', h") such that for some
policy m , m(s') = h' and m(s") = h'', The possible values for h'
will be either {0} (if s' is a state in which no more testing is
necessary) or {j I sj = -1} (any Yj not already tested); possible

values for h'" are analogous with respect to s'' ., For any such pair

(h', n") , set

L@U{(S', h') , (s", h")}) = L@ + Ehl(s') + Eh,,(s“)

and
U(d-u [,(S', h.) ’ (S“, h“)]) = Uw + Ei(S) - Ehl(S') = Eh”(S“)

-1(h = 0)P(3') X t. - 1(m=0)P(3Y) X t. .
jasi=-1 J RO J

Recompute the upper bound U by U = MinU(Q') over g' €& and return

to Step 2.

2 = - e s ot it et 0
e ke e e - e o ———

15

D. An Example

We conclude this chapter with a numerical example of the above branch
and bound method. The origin of the example is a fault finding problem
which will be fully described in Chapter 2.

We first remark that for any decision problem (Y‘. s

n i
AI’ S50, Ad) , it is sufficient to know only the sets

ii-{we{o. 117 | w e a; ,P[v-w}>o}.

All the quantities computed in the course of the algorithm remain un-

changed when Ai is replaced by A , and we could have assumed ini-

tially that the sets AI' ..., A, only partition {we {0, 1}" | P{y = w} > 0].

d

Data for example:

P{y = w}
0 /76 o0 o0 7/74% 3/74 L2/74 21/74
w, I 1 1 © 1 0 0 0 t, = L
w, | 1 1 o 1 0 | 0 0 t,= 3
)] 0 i1 0 0 1 0 t3 = 16
A I\2 A3 Al. A5
Each column of the table represents an w € {0, I]3 . The sets

A » A are singletons, so a policy must determine for each out-

l) e v 5
come of the random vector Y which elementary outcome w £ (Q has

occured. Clearly, no policy can stop by making no tests. We recall

that Ej (s) = tj menz(s) Zj (w) and

16
H | = o
1 if, for w (wl, o “ﬁ)' A wn) , we have
- P{Y=w} =0 or P{[Yy=w'}=0 or w and w' belong to
Aj(w) =

a common set among the sets [Al, ey Ad] s

0 otherwise,

However, for our example, we can take

‘ 1
Zj(w) -
lo otherwise

wi thout changing the value of p{y = w]Zj(w) . This particular form for
Ej(w) always occurs for fault finding problems such as this one. For

our example,

El(so) = L4(42/74) = 84/37 corresponding to w= (G, 0, 1)
Ez(so) = 3(42/74) = 63/37 corresponding to w= (0, 0, 1)
E3(S°) = 16(1/74 + 7/74 + 3/74) = 88/37 corresponding to w= (1, 1, 0),

w=(1,0,0) and w= (0, 1, 0) respectively.

We have maintained a record of those w 3 P{Y = w}Aj(w) >0 for each j
When computing Ej(s) in steps to come, we can use this data rather than
having to scan over the original data table. Following Step | of the
algorithm, we will compute the upper and lower bounds associated with the

trees di = {(s°,i)} , for i=1,2,3.
3 3 - o .=,0
L(e,) = jz-:l g - j;l Ej(s) + E(s)
= 23 - 235/37 + E,(s°) = 616/37 + E,(s°) .

3
vg,) = X ot - E(s%) =23 - E.(s7) .
= J ' i

if w = 0 and P{Y = w} > 0 and P{Y = (w'. S S T wn)] =0

T IS s,

17

We will represent policy trees graphically, making it clear how
they are a partial 5pecification of policies. For example, the trees

6?‘ = {(s®, i)} and their bounds are:

("l ol '-l)ll {-] ,'l."},z ('Is'l"')nB

0 | 0 1 0 1
L = 700/37 L = 679/37 L = 704/37

U= 767/37 U= 788/37 U= 763/37

The current upper bound is U = Min UQ?E) = 763/37 .

Proceeding to Step 2 of the ;lgorithm, we see none of the three
trees generated so far have lower bounds which exceed the current upper
bound U . We see policy tree 42 , representing all those policies
which begin by testing Y2 , has the lowest lower bound among all policy
trees thus far generated. As this tree is not complete, we begin by
extending this tree. A policy cannot stop in states (-1,0,-1) or
(-1,1,-1) as knowledge of Yz alone is not sufficient to determine both

Y| and Y3 , regardless of the valuz Y, takes. Hence, [(so, 2)} has

2
four extensions:

(s°,2) (s°,2) (s°,2)

N N N

(":0:'| ol (-"'!-l)'l (",0,"),3 ('lvlv'l)»3 (",0.“),' (-l)]’-l)$3

(s°,2)
0 1

('I,O,‘l),3 ('|v|.'l)a'

To compute the appropriate lower bounds, we have

T ; % > ' -

18

L(42/74) = 84/37 corresponding to w = (0, 0, |)

EI(-l,O,-l)

E.(-1,0,-1) = 16(7/74) = 56/37 corresponding to w = (1, 0, 0)

0

El(-l,l,-l)

E.(-1,1,-1) = 16(1/74 + 3/74) = 32/37 corresponding to w= (I, 1, 0)

and (0, 1, 0) respectively.

We see that to compute say E3(-l’ 1, -1) , we need only scan over w €
(-1, 1, =1) (i.e., w> w, = 1) for which P{Y = w]Aj(w) >0 . But this
list of w and corresponding P{Y = w} has already been generated in
computing EB(SO) . The lower bounds for these newly created trees are
easily computed. They are, respectively, 763/37, 767/37, 795/37, 735/37.
The best (lowest) of the new upper bounds created is Uﬁﬂz) + Ez(so) -
El(-l, 0, -1) - E3(-l, 1, =1) = 735/37 , hence the new value of U s
735/37. Returning to Step 2, we see the first three of the four newly
created trees can be dropped from further consideration, since their

lower bounds exceed the current upper bound U on TTT (s°) . We illus-

o
trate the renaining policy trees while suppressing the states involved.

L = 700/37 L = 735/37 L = 704/37

pageiiiE oy flerrirat S - = e e e e S e T e

19

Now, the first policy tree listed above has the lowest lower bound,

and since it is not complete, we continue to Step 3. The computations

are analogous to those made above.

EZ(O,-I,-I) = 3(42/74) = 63/37 corresponding to w= (0, 0, 1)
53(0,-1,-1) = 16(3/74) = 24/37 corresponding to w= (0, 1, 0)

Ez(l,-l,-l) =0

EB(I.-I.-I) = 16(1/74 + 7/74) = 6L4/37 corresponding to w= (1, 1, 0)

T P g i WU 10 v SRR e W

and (1, 0, 0) respectively.

The extensions of {(s°, 1)} are:

BB

L = 763/37 L = 788/37 L = 827/37 L = 724/37
The best af the upper bounds generated is Uczi) + El(so) - EZ(O, -1, -1)
- €3(l' -1, =1) or 724/37 , bringing the current value of U to

724/37 . Accordingly, the only policy trees remaining to be considered

N N

L = 724/37 L = 704/37

are:

Expanding the second policy tree, we see if Y, =1 , then Yl = Y2 = (

3

a.s., SO no more tests can be made, If Y, = 0 , then a policy can test

3

p or v, . Comparing these two extensions (k indicates the

“correct action', so Y € Ak a.s.):

either Y

—~——
EI(-I.-I,O) =0

0 | 0 |
g (1 - = stop stop
Ey(-1,-1,0) = 0 4 s

L = 704/37 L = 704/37

We see the upper bound generated by each policy tree is the same, namely
=, 0
U(Zy) + Ex(s°) = P((-1,-1,1)) 25 t. =23 - 7(b2/74) = 704/37 .
This improved value of U allows us to restrict our attention to the two
trees just created above. We remark that our calculations have now
fixed the value of 704/37 as the time of an optimal policy for this pro-
blem. Extending the first of these trees, we see only one extension is

possible.

Ez(o.-l.o) =0

E,(1,-1,0) =0

o

L = 704/37

There is no point in making any further upper bound computations. This
newest tree still has the same lower bound, so we extend it again. There
is only one extension, which gives a complete policy tree, at no increase

in lower bound. Hence, we have

B SR Rt e e st i i P a1 o o b

21

stop, stop, stop, stop,
k=5 k=3 k=2 k=1
L = 704/37

This tree is complete. It is a complete specification of a policy for
the states relevant to that policy. It follows that for any ™ repre-
sented by this tree (they are all equivalent). Tn(so) = 704/37 and

is optimal.

E. Deadline Criterion

Another criterion with great intuitive appeal that might be applied
to a policy is the deadline criterion. This is simply the probability of
having completed testing, determining the correct action, on or before
some specified deadline t . Policies in this case are rules telling the
user which Yj to test next, or to stop, depending on the current state
of the problem and the time remaining until the deadline.

There is a branch and bound technique fcr solving this problem ana-
logous to the one given above. We will describe a bound which could be
used to generate an algorithm, however, it does not seem particularly

well suited to the general problem. In Chapter 3 we will discuss special

decision problem structures with the deadline criterion,

22

In order to generate a branch and bound procedure for this criterion,
we need a lower bound on P{T11 >t | 8§} over all policies m , for each
state s and time t for which P(S) > 0 , where Tﬂ(s) is the random
time until the process stops, beginning in state s and following policy
n . Equivalently, an upper bound on P{Tn(s) <t | 8} over all policies
n or an upper bound on P{J policy m > Tn(s) St | §} would be sufficient,
The bound results by computing the probability of this event exactly,

It would appear that to compute this probability each time the algorithm
branches would make a considerably long computation. In particular, an
incremental process by which lower bounds were able to be computed above

no longer works here.

We will mention that the dynamic pragramming solution is easy to
formulate, however, the optimal value function now depends on the state
of the problem and the time remaining. This indicates that the function-
al equation must be solved about 3n Xt times, where t s the initial

deadline (assuming all times are integer).

RESESIESRE SR

23
CHAPTER 2

GENERAL FAULT FINDING MODELS FOR COHERENT SYSTEMS

Introduction

In this chapter we introduce coherent systems, a reliability model
for ''go, no-go' systems and give a description of some general fault finding

problems which are solvable as decision problems. An example is included.

A. Coherent Systems

Coherent systems arise from the study of a physical system whose
operation is classified as either functioning or failing, where this
operation is determined by the joint functioning or failing of some finite

set C of components. Accordingly, a joint performance of the components

C is a function X : € = {0, 1} with the interpretation that for
all c€ecC,

‘0 if component ¢ fails

X(c) =

ll if component ¢ functions .
A system (not necessarily coherent) will be denoted by (C , ¢) , where
@ is a function from all joint performances of the components to {0, 1}
with the interpretation that for all X ,
‘0 if the system fails under joint performance X

o(X) ’ll

if the system functions under joint performance X .

Cohzrent systems are those systems for which the replacement of a failed
component by a functioning one will not cause a functioning system to fail.
To express this precisely, we say, for joint performances X and Y ,

X Y whenever for all ¢ € C , X(c) <Y(c) . Then coherent systems

are those systems (C , ©) for which

(1) X <Y 2> q(X) < g(Y) .

24

We see some components may have no effect whatsoever on the system's
performance. Such components are referred to as inessential components.
Components not inessential are said to be essential. It follows that a

component c € C is essentiai to (C , ¢) if and only if
dx dex, Oc) # (X , lc) , where

(2) X(e) ife#c
(X . k) (e) =
K ife=c,.

Some common eramples of coherent systems are the series and parallel
systems, A series system functions if and only if all its components
function while a parallel system fails if and only if all its components
fail. These are special cases of the k-out-of-n systems, (k/n) . A
(k/n) system functions if and only if k or more of its n components
function. In our notation, we say (C , ¢) is a (k/n) system when

C contains n components and @(X) = 1 <=> 2: X(c) 2 k .
ceC

Coherent systems have been studied in the monograph [Barlow and
Proschan, 1955] as well as the literature, See MBirnbaum, Esary and
Saunders, 1961] and [Esary and Proschan, 1963] for a basic exposition of
coherent systems, particularly of the properties of the reliability
function P{p(X) =1}, the probability the system functions, when the
performance of each individual component is random and independent of the
other components. An application of coherent systems to characterize a
class of life distributions, those with increasing hazard rate average,
is given in [Birnbaum, Esary and Marshall, 1966]. Coherent systems have
also been studied under the guise of blocking systems, ([Butterworth,
1969] , [Fulkerson, 1968]).

Our definition of coherent systems in this chapter will differ from

that found in [Birnbaum, Esary and Saunders, 1961] and elsewhere. A minor

s ot - b e et

25

difference is that our definition allows all components to be inessential,
A significant difference is that while the assumption of independence, or
in some instances the weaker assumption of association (e.g., see [Esary,
Proschan and Walkup, 1966]), is usually made, we will allow the joint

performance distribution to be arbitrary.

B. Some Fault Finding Models for Coherent Systems

Consider a coherent system (C , ¢) for which the joint performance
of the components is random according to a known joint distribution. Let
the components be indexed Cy seees € and suppose one can test component
< requiring time t, , to learn whether it is functioning or not, The
object is to determine the state (function or failing) of each component
a.s. by sequentially testing some components, in minimum expected time,
A policy for testing is a feedback rule telling the user which component to
test next or, if enough information has been gleaned, to stop, based on
the previous tests and their results,

This is clearly a decision problem, To make the formal identification,
let
0 if component c, is failed

Yi = X(ci) =
1 if component <, is functioning .

The sets A' TR Ad can be taken as the singleton subsets of [6 . l]n .
clearly a partition, Knowing the state of each component is then equivalent

to knowing for which k we have Y € Ak a.s. We remark that for any

decision problem, it is sufficient to know only the sets

Aiﬂ{wlP[Y=w}>0},
and we could have assumed initially that the sets A] 00Ok Ad partition

{w | Piy =w} >0 } :

26

We hasten to remark that the introduction of coherent systems in the
above model serves only as a framework. The statement of the problem
does not depend on the structure function ¢ of the coherent system
(C , ¢) . Indeed, the problem is completely specified by the distribution
of the joint performance X and the testing times t,

The reason for this is the nature of our objective in testing the
system, The object was to learn as much as possible about the system,
namely the joint state of the components. This resulted in the partition
Al,.Ad of {0, I}n being the singleton subsets. We can formulate
objectives for testing a set of components which require learning some-
thing less than everything from our testing, and which, as is to be
ex-.cted, lead to a coarser partition of {0, 1}" than the one above.
Two such examples follow, in which it happens that the structure function
¢ does play a role in specifying the problem,

The first such model assumes, as above, that the joint performance X
of a set of components C is random according to some known but arbitrary
distribution. Suppose then that (C , ¢) is a coherent system and that
we wish to determine, in minimum expected time, whether the system is
functioning or not when its components are performing according to X .

As usual, we can test component < in time t, to learn its state.
This is a decision problem with Y, = X(ci) , i=1,..., n, and with the
partition AI e Ad having just two sets,

Al ,.:w | for x(ci) =, i=1,...,n; olx) = 0:
and its camplement

Az ==w | for x(c’) =w , i=1,...,n; o) = 0;.

The framework of coherent systems provides a natural example of a problem
in which our objective requires learning something less than everything

about the system,

27

Another, somewhat artificial, example is what we will call the

repair problem. As above, weare given a coherent system (C , o) for
which the components are performing according to the random joint
performance X . In this case, a failed component can be repaired at a
cost of r.z 0 for component c, - The object is to learn what is the
least (repair) costly set of failed components, say R , which, when
repaired, will insure the system's operation a.s. If one knew what
joint perforimance x : € = {0, I}n had occurred, it is clear that R
would satisfy

Z v, = Min Z r. | T are failed components which, when

c.€R c.er !

i i

repaired, insure the system's operation, i.e., for

(3)

y(e;) = if x(ci) =] or if c, €T, Y(Ci) = 0 otherwise ,

i
we have p(y} = 1 (

For example, tih2 set R would be empty if no repairs were necessary,

i.e. o(x) =1 . For purposes of making this example well formed, assume

that for every joint performance x with positive probability

(PfX = x] > 0) , there is a unique set of R of failed components satisfying

equation (3). This set R might be the same for several outcomes x , and

consequently it might not be necessary to determine specifically the state

of every component. In any case, we can ask for a testing policy which,

in minimum expected time, determines just what the set of failed components

R is. The resulting decision problem has Yi = X(ci) , =1 ,..., n,

as usual, The partition A' D000 Ad is induced by the repair costs r.

and the structure function ¢ of the coherent system. Two elements

and uw' of fO, I}n with positive probadbility will belong to a common

set A, whenever, for x(ci) = w; and x'(ci) =o' ,i=1,..., n,

x and x' are joint performances for which the same set of components

o Sre m

28

R satisfy equation (3). Our assumption that R is unique for each x
insures that this definition makes A ..., Ad a partition. If R

is not uniquely determined by (3) for each joint performance x , the
above problem formulation breaks down, Clearly one can, for each x ,
designate a specific R satisfying (3) and use it. However, this
procedure can lead to a sub-optimal policy. Notice that we are content
to restrict our attention to those w for which P{Y = @} >0 .

We should explain that the following similar problem is different
from the model described above. Given a testing time t and a repair
time r for each component ¢ » perform the necessary tests and repairs
to the components in order to guarantee the system will operate a.s., all
in minimum expected total time. Our solution of the repair problem would
give a sub-optimal policy for this problem, since it would test enough
components to determine the minimizing set if equation (3). However, it
may really be optimal to stop testing prior to this., For example, if the
sum of all the repair times for all components is less than every test
time, any optimal policy would make no tests whatsoever and instead would
make enough repairs so as to insure the system's operation a.s. on the
basis of no tests, repairing all components if necessary. It appears that
this problem can not be handled by the problem formulation of Chapter 1.

It does, of course, have a straightforward dynamic programming solution,

C. An Example
Let us illustrate the models presented so far with an example, The
coherent system for our example is one wit. three components, and is

easiest to specify by the following sketch,

Ww FT—

*2

Figure 1

Connections through a box labelled c; are present if and only if component

¢, functions., The system functions if and only if there is a path through

i
the network. Our system then functions whenever components c3 and

either ¢, or ¢, function, The distribution of the joint performance

X 1Is assumed to be the following: we suppose that nominally the components
operate independently of each other, with P[c] functions} = 1/4 ,

P{c2 functions} = 1/8 and P[c3 functions} = 2/3 ., However, we suppose
further that the system is down (not functioning), so the true distribution

of X is the conditional distribution P{X = x | o(X) = 0} . For the

above system,

PX=x} 0 1/74 0 0 7/74 3/74 W2/74 21/74 Test Times
x(c,) 1 1 1 0 1 0 0 0 ty = b
x(c,) 1o o 1 o 1 0 0 t, =3
x(c3) 1 0 1 1 0 0 1 0 t3 = 16

Table showing the distribution of X and the testing times for our
example

Figure 2

Each column of the table represents a joint performance x . The top row
of the table shows the (conditional) probability that X = x for each «x .
The table also shows the testing times for each component,

The first fault finding problem to consider, namely find the joint

sutate of the components in minimum expected time, is the example in

30

Chapter 1. The calculitions are éarefully explained there for every
step.

The second model described in this chapter, that is, determine with
probability one whether the system will function or not when put in
service, is simplified by the distribution of joint performance. Since
the system will a.s., not function, no tests are necessary and because
of the requirement that a policy must stop if possible, we see every
policy is optimal as every policy must have n(so) =0,

To specify the repair problem for this coherenﬁ system, we need to
specify a repair cost for each component. Figure 3 below shows the set
R of failed components realizing the minimum in equation 3 for each
joint performance x with P(X = x) >0 . We have taken rN=3,

ro = 2 , and r3 =],

R~ lcz] {C3} {‘:3} {CZ} [63 s CZ]

x(cl)] 1 0 0 0 ro= 3

x(cz) 1 0 1 0 0 r, = 2

x(c3) 0 0 0 1 0 ry =]
AI AI Al A2 A3

Table showing the set R realizing the minimum in

equation (3). Also shown are the sets Al , A2
and A3 which partition {w | Py =} >0 }.
Figure 3

Notice the assumption that the set R realizing the minimum of equation
(3) be unique is satisfied here, In Figure 3, we have also designated
the sets Al , A

mance x with the w ¢ {0 , 1}3 for which w, = x(e;) , i=1,2,3.

2 and A3 . Of course, we identify each joint perfor-

31

To begin the algorithm for this example, we need to compute

Ei(so) =t 2: P{Y = w} Ki (w) for i=1,2,3, where
weQ

1 if, for o' = (wl vl (R wi) TITY w3) , we have

Py =w} =0 or P{lYy=w'l=0 or 5 and o'

Ki(w) =
belong to the same Aj s Ji= 1, 25 3.
0 otherwise .,
We have:
E(s%) = L(1/7% + 3/74 + 2/74) = 92/37
E,(s°) = 3(1/74 + 7/74 + b2/7b) = 75/31
E5(s%) =16(1/7h + 7/74 + 3/74) = 88/37 .

The practice of keeping a record of those w for which Z}(w)P{Y = g} >0
when E}(so) is computed can be followed here, as well as for any decision
problem, This practice tends to reduce some of the work necessary in
computing E}(s) for sutsequent states s , at least in hand computations,

and is detailed in the example of Chapter 1. Using equations (9) and (10) %

of Chapter 1, we begin with the following three policy trees and bounds.

dl: ﬂ‘ 42‘ 0/%1 43; ﬂ

L(d}) = 688/37 L@,) = 671/37 L073) = 68L/37
U(QI) = 759/37 u@,) = 776/37 U(43) = 763/37
Figure &4

The computations are fundamentally no different from those in the examples

of Chapter 1, except of course for the choice of the sets A ey A

l 9 d .
By following the branch and bound algorithm, the following optimal policy

is generated,

32

R

0 |
stop, k = |
0 1
stop, k= 3 stop, k = |

Expected time to use this optimal policy is 692/37 . k
is the correct actior' the random variable defined by the

equation YGAk a.s.

Figure §

D. Extensions to Problems with Modules

Within the study of coherent systems, the notion of a module has
been studied. In [Birnbaum and Esary, 1965], a module is defined to
be a subsystem of a coherent system, Specifically, a nonempty set

AcCC is amodule of (C, 9) if we can write:

)
VX, o) = w(rxly) . xl._0)
where
X|A is X restricted to the set A (hence a joint performance
of the components A).
(A , T) is a coherent system, sometimes referred to as the module
rather than A .

([cAl U (C-A) , v) is a coherent system, with the pseudo-component

«:A replacing the set A . The specification for the pseudo-

component ¢, is given by I‘(xlA) .

33

For any coherent system, every singleton (one element) subset is a
module, For the (k/n) systems other than the series and parallel, the
only modules are the singletons., For the series or parallel systems, every
nonempty proper subset of components is a module.

Our interest in modules will be to foruulate a very general fault
finding model. To extend one of the models previously mentioned, suppose
that MI Vet Hm is @ modular partition of C for the coherent system
(C, ¢) . By this we mean each M, is a module of (C , ©w) and
MI veres Mo is a partition of C ., 1If (Mi 5 Fi) is the coherent
system for module Mi in the definition of a module, then our problem
might be to determine the joint state of these modular subsystems in
minimum expected time, by testing individual components, Let X denote
the random joint performance of the components € for (C , ¢) . Then
this problem is a decision problem, with Yi = X(ci) y =1 ,00., N,
There are 2" A.'s , one for each joint state of the random vector

rl(flﬁ) FEFERE Fh(rln) . This model reduces to a previous one when
1 m

each Mi is a singleton,

A general fault finding model which relies on modules is one in
which we suppose there are two sets of modules, the observable modules
Ql noooh Qq , and the repairable modules RI ndBog Rr . The idea is that
tests can be performed on any of the observable modules to determine
whether they are functioning or not; we are limited to repairing or
replacing only repairable modules. In order to make this problem well-
formulated, assume that the joint state of the repairable modules is a.s,
some function of the joint state of the observak.e modules. We can say

then, knowing the joint state of the observable modules a.s. implies we

know the joint state of the repairable modules., The decision problem is

34

to a.s. determine, in minimum expected time, the joint state of the
repairable modules by testing the observable modules. Assume module Q.
i

requires time ti 20 totest, i =1 ,,., q. For this model, take

Y, - I‘Q‘<X|Ql>, i=1,..., g where (QI , FQ') is a typical

observable module. There are 2" Aj's , one for each joint state of

the repairable modules.

E. Computational Experience

The branch and bound algorithm and the dynamic programming solution
to the first fault finding model in Section B above were programmed on
an IBM 360 (model 67) computer. Briefly, the problem is to determine
the state of every component of a coherent system, in minimum expected
time. Again we must remark that the problem is specified by the joint
distribution of component performance; the coherent system only provides
8 framework in which to pose the problem,

The cases listed below are representative of those worked out,

The distribution of component performance was nominal Independence conditioned
on the system being down (type 1) or conditioned on the system having just
gone down (type 2). Thus, given a (k/n) system is down, there are at
most k = 1 working components; glven It Just went down, there are exactly
k = 1 working components, Al!l joint distributions were generated by a
(k/n) system, and a type (1 or 2) of conditional distribution. They are
specified by k/n , type In Figure 6. These distributions are carefully
detailed in the Introduction to Chapter 3. Figure 6 gives a comparison
of the two methods employed. The column ''positive states' gives the
number of joint performances x with positive probability, I.e. for
which P{X = x} > 0 . '"Cycles" refer to the number of iterations the

branch and bound method made. Some problems proved to be too large for

v+

—— NS

35

the branch and bound method to work in a reasonable length of time.

Computation time, in seconds

joint positive dynamic branch
distribution states programming and bound cycles

2/3,1 L .10 .0k 3
3/3,1 7 .12 .08 5
2/b 1 5 .69 .20 7
2/4,2 b .69 34 11
3/b4,1 A .91 b4.27 91
3/4,2 6 .85 2.30 49
L/u, 1 15 1.04 54.65 319
L/b,2 L T4 .39 1
2/5,1 6 L.17 1.46 21
2/5,2 5 L.17 2,65 36
L/5,1 26 7.16 not run
L/s5,2 10 5.97 > 600

2/6,1 7 26.67 10.79 60
2/6,2 6 26.92 23,29 118
6/6,2 6 27.50 24,68 111

Comparison of Dynamic Programming versus Branch and Bound

Figure 6

The dynamic programming computation time grows roughly as 6" "
where n is the number of components. There is some variation in
computation time for various joint distributions with the same
number of components, however the number of positive states seems to
give a rough indication of this variation, fewer positive states
leading to shorter computation times,

Branch and bound computation times are seen to vary substantially,
even for a fixed number of components. While in some cases this method
was faster than dynamic programming by a factor of about 3, in other
cases it was slower by several orders of magnitude., If a specific

problem was being solved many times over for different input data, some

-

36

experience with both solution methods would be useful in determining
which one handles that problem best,

One final observation to be made is that, for this specific
problem, it seems that the largest problem either solution method could
handle in, say less than 30 minutes, has eight or nine components,

This may be a severe restriction on solving ''real' problems.

37

CHAPTER 3
ANALYTICAL RESULTS FOR (k/n) SYSTEMS

Introduction

In this chapter we define several fault finding models and obtain
some analytical results concerning them, The framework is that of coherent
systems, introduced in Chapter 2, Chapter 3 is deveioped independently of

Chapter 1,

A. Background

The basic problem comes about by considering a coherent system whose
components are subject to being tested. The tests each require a known
non-negative time to complete, and are performed sequentially until
enough information has been learned, What constitutes enough information
depends on the goal of the testing process,

Each model is specified by a coherent system (C, ®) , a joint
distribution for the set of performance indicators {x(c) | c€ C} , @
goal for the testing process, either determining the state of every
component, or determining the state of the system, and a criterion for
comparing policies,

It is convenient to index the components In C , say €l s sev s €
letting Y, " X(c') and Y = (Y' iBle =i Yn)' Our choice of a coherent
system will be 1imited to & k-out-of-n system, hereafter written (k/n) .
Recall that 8 (k/n) system is one of n components which functions If and
only if k or more of its components function, In the above notation
o(X) = | <=> 3;% X(c) 2 k <=> = Y, 2 k . In particular, (1/n)
systems are known as parallel systems and (n/n) as series systems,

While independence is not always an appropriate distribution for the

random variables [Yl yeoos Yn} , It does play a fundamental role in our

38

models. When we are concerned with determining the system's state,

independence is assumed., When we seek the state of all the components,
one of two distributions is assumed., The first is obtained by assuming
that the components nominally operate independently, except that we know
the system is down (not functioning). Hence the actual distribution is
independence conditioned on the system being down. The second is again
nominally independence. We suppose all components begin service in an
operating state and function independently for some random lifetime, each
with its own distribution. This process continues until the system fails,
at which time every component is frozen at its current state. We suppose
further that no two components have positive probability of simultaneous
failure. We say the system has just gone down, that is, has at least one
failed component which, when restored, will bring the system up again,

For example, a series system which is down has one or more failed components
while a series system that has just gone down has exactly one failed
component.

The two criteria considered are mentioned in Chapter 1, the expected
time to complete the testing process and the probability that the testing
is completed on or before some deadline,

A palicy is a rule which indicates which component should be tested
next, based on the results of tests already made, provided any further
testing is necessary. In Chapter | policies were functions, giving a
component to test or an indication that testing could cease, for every
possible state of our knowledge about the problem. While this formal
representation was useful in Chapter |, a more informal (but equivalent)
representation is used here, Namely, a policy will be a certain kind of
directed graph. Each node is either a stop node, meaning the testing

process can cease upon reaching this point, or a test node, meaning more

G T m— bl mmm

39

testing is necessary. The stop nodes are labeled S and have no arcs
leaving them, The test nodes are labeled i, 1 <i <n , indicating
component <; is to be tested at this juncture, and have exactly two
arcs leaving them, One arc is labeled 0 , the other arc 1 , corres-
ponding to the event of finding component <, failed or working
respectively, Each node has exactly one arc entering it, except a

single source node corresponding to the beginning of the testing process.
Figure 1 illustrates typical policies for a (2/3) system with several
choices of a goal and joint distribution., The forward orientation of

each arc is downward,

(b) (c)

(a) typical policy for finding the state of all components of a
(2/3) system when the joint distribution of component perfor-
mance is noninally independence, conditioned on the system being
down,

(b) same as (a), except that the nominal distribution Is conditioned
on the system having just gone down,

(c) typical policy for finding the system's state for a (2/3) system

when the joint distribution of component performance is indepen-
dence,

Figure 1

40

The reader should be able to verify that each node labeled S
really is a juncture at which testing can cease. It should be clear how
these graphs are intended to be used as policies, The component to be

tested initially is indicated in the source node, for example c, in

2
policy (a) above., Upon testing a component and finding it, say failed,
we proceed to the node connected to our present node by the arc labeled
0 and stop or make a test as indicated by the node at our present
position, In order to avoid useless complications, it Is assumed that
a policy does not test the same component more than once., O0f course,
this does not prevent two nodes from indicating a test of the same
component, for example policy (c) of Figure 1. These assumptions are
also made in the policy definition of Chapter 1.

Policies (a) and (b) of Figure ! illustrate that In some Instances,

a policy can be specified by an ordering of the components. We will refer

to policies which are specified by orderings of the components as sequen-

tial p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>